信息论笔记
还是复习。
第一章 绪论
不提
第二章 离散信息的度量
习题 2.6
在某地篮球联赛的每个赛季中,最终只有 A、B 两队进入决赛争夺冠军。决赛采用 7 场 4 胜制,首先赢得 4 场胜利的球队获得冠军,并结束比赛。把产生冠军的事件 x 用 A、B 两队各场次比赛结果表示,作为信源 X 产生的随机事件,例如:AAAA 表示事件“A 队前 4 场获得冠军”;ABBAAA 表示事件“ A 队在第 1、4、5、6 场取胜获得冠军(而 B 队在第 2、3 场取胜)”……假设两队在每场比赛中的取胜机会均等,每场比赛只有“A 胜”或“B 胜”两种结果,并且各场比赛的结果是彼此独立的。
(1)求信源的熵 H(X)。
事件 | 数目 | 单事件的概率 | 概率的和 |
---|---|---|---|
赛 4 场获冠军(AAAA) | 1 | 1/16 | 1/16 |
赛 5 场获冠军(前 4 场 B 胜 1 场) | 4 | 1/32 | 1/8 |
赛 6 场获冠军(前 5 场 B 胜 2 场) | 10 | 1/64 | 5/32 |
赛 7 场获冠军(前 6 场 B 胜 3 场) | 20 | 1/128 | 5/32 |
总概率 | 1/2 |
注意到上面乘 2 是因为 A 队和 B 队的概率是相等的。
(2)求事件“两队打满 7 场”所提供的信息量。
“两队打满7场”事件数为 40,所求概率为
(3)列出 A 队前 3 场都失利的所有情形,求“A 队前 3 场都失利”所提供的信息量。
如表所示:
事件 | 概率 | 结果 |
---|---|---|
BBBB | 1/16 | B 夺冠 |
BBBAB | 1/32 | B 夺冠 |
BBBAAB | 1/64 | B 夺冠 |
BBBAAAB | 1/128 | B 夺冠 |
BBBAAAA | 1/128 | A 夺冠 |
概率和就是 1/8,所以有
(4)求事件“A 队在前 3 场获胜的条件下又取得冠军”所提供的信息量。
A队在前 3 场失利的条件下又取得冠军的条件概率为
“A队在前 3 场失利的条件下又取得冠军”的信息量为
习题 2.7
已知随机变量
因为
习题 2.16
两随机变量
y=0 | y=1 | |
---|---|---|
x=0 | 1/8 | 3/8 |
x=1 | 3/8 | 1/8 |
(1)
(2)
(3)
其概率取值容易计算如下:
由表知,
(1)
主要利用自信息的平均值为熵,即
注意
比如
(2)
主要利用熵的可加性,即
(3)
主要利用平均互信息与熵的关系,即
第三章 离散信源
重点公式:
习题 3.9
设
(1)
正确,由于平稳性有
(2)
错误,若
但如果序列具有周期性,且周期为
(3)
错误
定理 3.3 对任意离散平稳信源,若
①
②
③
④
(4)
正确
习题 3.10
一个 2 状态马氏链的转移概率矩阵为
并假定初始状态概率矢量为
(1)
所以,有
(2)
由上面已经求得的结果可以类推得
习题 3.15
3.15 黑白气象传真图的消息只有黑色和白色两种,即信源
(1) 假设图上黑白消息出现前后没有关联,求熵
假设黑白消息出现的前后没有关联,则等效于一个离散无记忆信源,概率空间为
信源的熵为
(2) 假设消息前后有关联,其依赖关系为
假设黑白气象传真图的消息前后有关联,其状态集
此马尔可夫链状态转移矩阵有,则状态平稳分布存在。设状态的平稳分布为
此一阶马氏源的熵为
(3) 分别求上述两种信源的剩余度,并比较
前后没有关联情况下信源的剩余度:
一阶马尔可夫信源的剩余度:
物理意义:一阶马尔可夫信源考虑了消息前后的关联,使得符号熵减少,信源的冗余增加,同时编码的熵增加。
习题 3.21
给了一个一阶马氏链的状态转移图如图,符号集为
(1) 求状态平稳分布
由状态图可得状态转移矩阵
由
以及
解得
信源的符号熵为
(2) 当
因为
令
所以
当
(3) 如果将信源看成无记忆的且以平稳分布为概率分布,求信源的熵率。
得
由此计算结果可知
第四章 连续信息与连续信源
习题 4.1
(1) 指数概率密度
(2) 拉普拉斯概率密度
习题 4.13
给定两连续随机变量
其中,
习题 4.14
给定两连续随机变量
(1) 求随机变量
(2) 计算
习题 4.20
设
令
上面用到了行列式的性质:
第五章 无失真信源编码
习题 5.1
有一信源,它有 6 个可能的输出,其概率分布见下表,表中给出了对应的码 A,B,C,D,E 和 F。问:
(1) 这些码中哪些是即时码;
(2) 哪些是唯一可译码,并对所有唯一可译码,求出其平均码长
消息 | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
1/2 | 000 | 0 | 0 | 0 | 0 | 0 | |
1/4 | 001 | 01 | 10 | 10 | 10 | 100 | |
1/16 | 010 | 011 | 110 | 110 | 1100 | 101 | |
1/16 | 011 | 0111 | 1110 | 1110 | 1101 | 110 | |
1/16 | 100 | 01111 | 11110 | 1011 | 1110 | 111 | |
1/16 | 101 | 011111 | 111110 | 1101 | 1111 | 011 |
(1) 即时码就是没有一个码字是另一个码字的前缀。比如 B 里 0 是 01 的前缀,D 里 110 是 1101 的前缀,F 里 0 是 011 的前缀,所以只有 A, C, E 是即时码。
(2) 观察表中这些码组,A 是等长码,其中没有相同的码字,所以 A 是唯一可译码。其他码组都是变长码,可采用唯一可译变长码来判断:码组 B、C、E 是唯一可译码,码组 D、F 不是唯一可译码。唯一可译码的平均码长为
因此,
习题 5.5
是否存在码长分别为 1, 2, 2, 2, 2, 2, 3, 3, 3, 3 的唯一可译三元变长码?是否可以构造一个码长为 1, 2, 2, 2, 2, 2, 3, 3, 3 的即时码?存在多少这样的码?
(1) 因为
(2) 可以构造码长为 1, 2, 2, 2, 2, 2, 3, 3, 3 的即时码,例如:0, 10, 11, 12, 20, 21, 220, 221, 222。
(3) 因为一个即时码码字集合与一棵码树的叶有一一对应的关系,不同的码树对应不同的码字集合。现分析这种码树生成过程:一个根节点延伸出 3 个 1 阶节点,其中有 2 个 1 阶节点要各自延伸出 3 个 2 阶节点,方法数是 3;6 个 2 阶节点中有 1 个延伸出 3 个 3 阶节点,方法数是 6,所以不同码树数目为 3 × 6 = 18,其中的一棵码树如图 5.5 所示。一个码字集合可以根据不同的对应关系分配给信源符号,如果信源符号和码字都是 9 个,则有 9! 种分配方式。所以,存在的编码方式数为 18 × 9!。
习题 5.7
设信源
(1) 求信源的熵和信源剩余度。
剩余度
(2) 设码符号为
码符号
(3) 把信源的
当
紧致码(即哈夫曼码)为:
码字 | 0 | 10 | 110 | 111 |
---|---|---|---|---|
码长 | 1 | 2 | 3 | 3 |
平均码长
同理,当
当
当
(4) 计算当
编码效率
所以
习题 5.8
某离散无记忆信源有8个信源符号
(1) 对信源进行码长方差最小的二元 Huffman 编码,求平均码长、码长的方差,以及码率和编码效率。
信源符号 | 码字 |
---|---|
010 | |
100 | |
101 | |
110 | |
111 | |
00 | |
0110 | |
0111 |
编码效率为:
(2) 将信源符号编成香农码,求平均码长、码长的方差,以及码率和编码效率。
无参考答案,嘻嘻。
第六章 离散信道及其容量
习题 6.6
设二元对称信道的概率转移矩阵为
(1) 若
设输出概率为
(2) 求该信道的容量及其达到容量时的输入概率分布。
该信道为二元对称信道,达到容量时输入等概,即
习题 6.11
一个离散无记忆信道如图6.22所示:
(1) 写出该信道的转移概率矩阵;
信道的转移概率矩阵为
(2) 该信道是否为对称信道?
该信道不是对称信道。
(3) 求该信道的信道容量;
由
解得
(4) 求达到信道容量时的输出概率分布。
习题 6.12
一个 Z 信道的转移概率如图6.23所示:
(1) 求信道容量;
?考试考这个我似了算了
信道转移矩阵为
输入概率均大于零,所以信道容量为
(2) 若将两个同样的 Z 信道串接,求串接后信道的转移概率矩阵;
(3) 求 (2) 中串接信道的容量和达到容量时的输入的概率分布;
(4) 将 n 个同样的 Z 信道串接,求串接后信道的转移概率矩阵和信道容量。
习题 6.14
给定如图6.25所示的级联信道,求:
感觉这题答案有点问题
(1)
由于
所以信道为弱对称信道,当输入等概时达到容量。
(2)
由于信道为弱对称信道,当
(3)
该信道是弱对称信道,当输入等概率分布时达到信道容量
所以
输入等概时达到容量。
第七章 有噪信道编码
习题 7.3
一信道输入符号集
现有 4 个等概率消息通过此信道输出,若选择这样的信道编码:
(1) 编码后信息传输速率等于多少?
编码后信息传输速率:
(2) 证明在此译码规则下,对于码字的译码错误率
设 4 个消息的编码分别为:(0, 0, 1/2, 1/2),(0, 1, 1/2, 1/2),(1, 0, 1/2, 1/2),(1, 1, 1/2, 1/2),通过信道传输后,每个码字的前两位无差错,所以不同的码字的传输得到不同的译码结果,无译码错误。
习题 7.4
一个二元对称信道的转移概率矩阵为
信道输入符号 0,1 的概率分别为
(1) 求利用 MAP 准则的判决函数和平均错误率。
MAP 准则
联合概率矩阵:
当接收到 “0” 时:
若
所以
同理,得
因为
MAP 判决函数:
平均错误率:
或
(2) 求利用 ML 准则的判决函数和平均错误率。
利用 ML 准则
当接收到 “0” 时,若
所以
同理,得
所以,有
ML 判决函数:
平均错误率:
(3) 什么时候上述两准则的判决结果相同?
当
第八章 波形信道
这个例题是关于离散时间无记忆加性噪声信道的输入和输出的互信息、信道容量及其概率分布的求解。具体问题和解答如下:
习题 8.3
一个离散时间无记忆加性噪声信道的输入
(1)写出信道输入
(2)求信道容量和达到容量时的输出概率分布。
(3)求达到容量时的输入概率分布。
(1)
(2)因为
信道容量
(3)因为
做反变换,得
所以达到容量时,
习题 8.6
设离散时间连续信道的输入与输出分别为
(1)信源无记忆时,有
故:
(2)信道无记忆时,有
故:
综上所述,当信源和信道无记忆时,这两个等式分别成立。
第九章 信息率失真函数
不用考,不学啦!